本文目录一览:
锂电池的正负极反应式
正极上发生的反应为
LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子)
负极上发生的反应为
6C+XLi++Xe=====LixC6
三元锂电池寿命取决于什么
三元锂电池寿命取决于电池材料老化衰退的影响。如果能将锂离子电池的副反应降至低水平,使锂离子通过电解液始终能顺畅地往返于正负极材料之间,就能使锂离子电池的循环寿命得以增加。
锂离子从正极移动到负极必然经过覆盖在碳负极上的SEI 膜,SEI 膜的好坏直接影响电池的循环寿命。国外学者对电池材料老化衰退的研究比较早,特别是对SEI 膜的研究比较深入。
锂离子电池充放电循环的过程即为锂离子通过电解液在正负极材料之间来回脱嵌、移动的过程。在锂离子电池循环过程中,在正负极发生氧化还原反应。
扩展资料
锂离子电池的正极材料有很多种,主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。
其中磷酸铁锂作为正极材料的电池充放电循环寿命长,但其缺点是能量密度、高低温性能、充放电倍率特性均存在较大差距,且生产成本较高,磷酸铁锂电池技术和应用已经遇到发展的瓶颈;锰酸锂电池能量密度低、高温下的循环稳定性和存储性能较差,因而锰酸锂仅作为国际第1代动力锂电的正极材料。
而多元材料因具有综合性能和成本的双重优势日益被行业所关注和认同,逐步超越磷酸铁锂和锰酸锂成为主流的技术路线。三元材料的电芯代替了广泛使用的钴酸锂电芯,在笔记本电池领域广泛使用。
在容量与安全性方面比较均衡的材料,循环性能好于正常钴酸锂,前期由于技术原因其标称电压只有3.5-3.6V,在使用范围方面有所限制,随着配方的不断改进和结构完善,电池的标称电压已达到3.7V,在容量上已经达到或超过钴酸锂电池水平。
参考资料来源:百度百科-三元锂电池
充电时正负极放反对锂电池有伤害么?
电池正负极充电器的正负极不是完全统一的,在充电时正负极接反对电池没有什么损害,只是充电器可能会烧掉保险丝,严重的回损害整个充电器。
有的充电器一般都带有“极性”识别电路,能够自动识别极性。极性不正确时充电器就停止工作,对电池没有什么影响。
组成部分
钢壳/铝壳/圆柱/软包装系列:
(1)正极——活性物质一般为锰酸锂或者钴酸锂,镍钴锰酸锂材料,电动自行车则普遍用镍钴锰酸锂(俗称三元)或者三元+少量锰酸锂,纯的锰酸锂和磷酸铁锂则由于体积大、性能不好或成本高而逐渐淡出。导电集流体使用厚度10-20微米的电解铝箔。
(2)隔膜——一种经特殊成型的高分子薄膜,薄膜有微孔结构,可以让锂离子自由通过,而电子不能通过。
(3)负极——活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔。
(4)有机电解液——溶解有六氟磷酸锂的碳酸酯类溶剂,聚合物的则使用凝胶状电解液。
(5)电池外壳——分为钢壳(方型很少使用)、铝壳、镀镍铁壳(圆柱电池使用)、铝塑膜(软包装)等,还有电池的盖帽,也是电池的正负极引出端。
三元锂电池反应方程式是什么?
锂离子电池是建立在RCB理论的基础上的。锂离子电池的正负极均采用可供锂离子(Li+)自由脱嵌的活性物质,充电时Li+从正极脱嵌通过聚合物电解质到达负极,得到电子后与碳材料结合变为Li×C6,放电时,锂离子自负极析出,通过电解质,到达正极,重新回到层状钴酸锂的骨架中,恢复到充电前的状态。
充放电时离子的往返的嵌入、脱嵌正像摇椅一样摇来摇去,故有人又称锂离子电池为“摇椅电池”,又叫RCB电池(英文RockingChairBatteries的缩写)。
在用LiCoO2做正极,石墨做负极场合的可充锂二次电池的构造为C∣ES∣LiCoO2(ES:Li+传导性有机电解液)。
以上组成的电池的端电压是零伏,但在含有LiBF4,LiPF6等锂离子的支持的非水溶剂中,充电时根据反应LiCoO2+6C→CoO2+LiC6的反应,因正、负极材料的活化蓄了电的二次电池则成为:LiC6∣SE∣CoO2。在这个电池中正极反应、负极反应和全电池反应分别以1-3式表示。
正极反应:CoO2+Li++e→LiCoO2(1)
负极反应:LiC6→Li++e+6C(2)
全反应:CoO2+LiC6→LiCoO2+6C(3)
化学上而言,负极的充电反应是锂和石墨层间化合物(G∣C)生成的嵌入反应(石墨的还原),放电反应是脱嵌反应(氧化)。
石墨层间Li嵌入作用的第一阶为Li-GIC化学计量组成LiC6,生成LiC6所必须的电容量372mAh/g称做石墨的理论容量。探索单位体积、单位重量能填充更多的可逆电容量的锂离子的碳材料,就是开发更高能量密度、更高效率的锂二次电池。
锂电池的正负极分别是什么?
1、正极(阴极)二氧化锰是主要成分,用来产生充放电的化学反应、添加成分是为了提高电池的性能。
2、负极(阳极)金属锂或其合金金属为负极材料,这些东西涂在铜箔上、负极上发生的
锂电池的主要构成材料包括电解液、隔离材料、正负极材料等。
正极材料占有较大比例(正负极材料的质量比为3:1~4:1),因为正极材料的性能直接影响着锂电池的性能,其成本也直接决定电池成本高低。
锂电池主要由正极材料、负极材料、隔膜和电解液等构成,正极材料在锂电池的总成本中占据40%以上的比例,并且正极材料的性能直接影响了锂电池的各项性能指标,所以锂电正极材料在锂电池中占据核心地位。
扩展资料:
电池特征
1、高能量密度
锂离子电池的重量是相同容量的镍镉或镍氢电池的一半,体积是镍镉的20-30%,镍氢的35-50%。
2、高电压
一个锂离子电池单体的工作电压为3.7V(平均值),相当于三个串联的镍镉或镍氢电池。
3、无污染
锂离子电池不含有诸如镉、铅、汞之类的有害金属物质。
4、不含金属锂
锂离子电池不含金属锂,因而不受飞机运输关于禁止在客机携带锂电池等规定的限制。
5、循环寿命高
在正常条件下,锂离子电池的充放电周期可超过500次,磷酸亚铁锂(以下称磷铁)则可以达到2000次。
6、无记忆效应
记忆效应是指镍镉电池在充放电循环过程中,电池的容量减少的现象。锂离子电池不存在这种效应。
7、快速充电
使用额定电压为4.2V的恒流恒压充电器,可以使锂离子电池在1.5--2.5个小时内就充满电。
参考资料来源:百度百科——锂电池
三元锂电池自燃原因是什么
锂离子电池起火原因,可以划分成两个大部分,自身原因和外部原因。自身原因重要是指自身材料、结构热稳定性的好坏,对火灾发生与否的影响;外部原因,指各种滥用手段,引发的锂离子电池火灾。
在动力锂电池普及应用的初期,由于对电池性能认识不足,自身设计相关经验的缺乏以及使用者对系统的不熟悉,出现过一些事故。加之电动汽车这种新兴势力时时刻刻活在观察者眼光下的处境,使得锂离子电池火灾影响尤为广泛。
1.1自身原因锂离子电池由正极材料,负极材料和电解液组成,这几部分的热稳定性,直接影响着电芯发生热失控的可能性。
负极材料的热稳定性的影响因素目前应用的负极材料,绝大部分是碳材料。在高温条件下,石墨容易与电解液发生反应,尤其电池荷电量高的状态,LiC6更是能够提升反应的激烈性。
有研究发现,负极开始反应放热的温度起点,与碳材料的颗粒度有关,颗粒越大,其开始反应的温度就越高,也就越安全。同时,不同结构的碳材料参与电解液的反应,其放热量并不相同,石墨就比无定型碳(重要指软碳和硬碳)放热量大。
正极材料热稳定性的影响因素当前应用广泛的锂离子电池正极材料,都是锂的化合物。磷酸铁锂,锰酸锂和三元锂,假如泛泛的说,三者的安全性是从高到低排列的。而有人专门对正极材料在这些电池安全性中的影响做了研究。
研究认为,锂的化合物分子式中,锂的含量越高,其热稳定性就越差,开始与电解液反应的温度就越低。有个定量的比较,分子式中各个原子的比例系数,当锂的系数是0.25时,其反应温度为230°C;假如这个数值变成1,其起始反应温度就变成了170°C。此外,假如正极材料中含有除了锂以外的其他金属元素,则含锰元素的正极材料比含镍元素的正极材料热稳定性好。
电解液热稳定性影响因素电解液可以说是热稳定性问题的核心,它的稳定性直接影响整个体系的稳定性。有人针对电解液的热稳定性做了一些列研究,结果表明:电解液中的碳酸二甲酯含量越高,其热稳定性越差,越容易与正负极材料发生反应;电解液与越多类型材料相容性差,也就是在较低的温度下可以与多种不同的盐类发生反应,说明它越活泼,其热稳定性就越差。
老化带来的热失控老化是一个综合的过程,负极SEI膜结构老化,出现破损,引发自生热过程;负极锂枝晶堆积,造成内短路或者遇到高温环境与电解液激烈反应。老化带来的内阻上升,使得热积累出现的概率上升。总的来说,老化与热失控风险存在正相关性。
1.2各种滥用下的热失控因素锂离子电池的滥用,一般指由于意外事故或者管理系统故障造成对电池不恰当的使用。
(图/文/摄: 问答叫兽) 星瑞 理想ONE Model Y Model X 高合HiPhi X 零跑T03 @2019