本文目录一览:
电池材料培训有哪些课程
电池、电池产品基础知识
电池正极材料知识培训
光电化学(化学类太阳能电池)
热电化学(热转电材料)
电催化(电解水产氢、氧,还原二氧化碳、转氨等等)
电池(包括锂离子电池、锂金属电池、钠离子/金属电池等)
电容器(化学类的超级电容器)
腐蚀(主要研究防腐材料)
电去离子(去除污水中金属离子)
实际上,电化学大类中,各导师的研究方向远不止以上这些。还有许多导师研究理论方向,比如研究表面活性剂界面上双电层电容具有的特性、电化学体系与谱学联用以及电化学交流阻抗谱理论公式推导与分析等等。
专题报告:磷酸铁锂电池迎来强复苏
北极星储能网讯:导读:磷酸铁锂产业链涉及上游原材料磷酸、磷酸铁、碳酸锂,中游正极材料磷酸铁锂以及下游磷酸铁锂池和整车,后端市场还包括动力废旧磷酸铁锂电池拆解、梯次利用和湿法回收。
2019 年,新能源 汽车 销量因补贴大幅下滑而负增长,预计 2020 年我国新能源 汽车 补贴不再退坡, 但单车降本压力仍然存在,磷酸铁锂电池在成本方面较三元有较大的优势,再次进入市场视线。本文是铁锂电池产业链系列报告第一篇,主要阐述铁锂电池在动力领域的复苏逻辑,强调铁锂电池在低端乘用车领域的应用优势以及部分企业在这方面的积极 探索 。
成本驱动磷酸铁锂电池向乘用车领域持续渗透
从材料到电池,磷酸铁锂技术路线成本优势明显
电池的性能由材料性能水平决定,作为锂电池的一种,磷酸铁锂电池(LFP 电池)优缺点都非常明显:成本低,循环次数高、低温性能差、能量密度低。特殊的指标数据决定了LFP 电池在新能源 汽车 中的份额逐渐被功率密度和能量密度更高的三元电池蚕食,目前的装机主要集中在客车和专用车上,在乘用车领域的装机量份额较低。但随着补贴政策大幅变动,一直追求三元电池高能量密度的方向遇到了成本的阻力。在降成本的压力下,寻找其他电池替换三元电池是车企一直坚持的思路。在价格上较三元电池便宜 10%-15%的 LFP 电池成为车企在低端乘用车型上考虑方案之一。
LFP 电池成本较三元电池低 10%-15%,差距主要体现在两种电池的材料体系上。在三元电池体系中,电池占整车成本的 40%,其中三元正极材料又占电池成本的 30%左右。三元正极材料中钴镍锰有价金属含量高,尽管钴价格从最高点 68 万元/吨下跌至 28 万/吨,加上镍锰盐和碳酸锂/氢氧化锂材料以及加工成本,三元材料的价格在 12-18 万元/吨区间。而 LFP 正极主要由磷酸铁+碳酸锂组成,以两者较低的价格,最终 LFP 正极价格仅 4.1-4.5 万元/吨。另外,LFP 电池主要使用干法隔膜,价格也较三元电池用的湿法隔膜低。最终体现在电芯价格上,LFP 电芯的成本可以做到0.55 元/Wh,而三元电芯的成本则在 0.65 元/Wh 左右。两者的价差会因为正极材料价格差异而长期存在。叠加 pack 环节,两者之间的价差绝对值在 0.15 元左右。
低端乘用车降本优先,铁锂电池配套比例提升
2019 年,新能源 汽车 补贴大幅下滑,地方补贴也取消,导致单车平均补贴降幅高达 70%。从绝对额上看,微型车和小型车补贴金额从 4-5 万区间骤降至1.8 万元以下,降本是未来 2-3 年低端乘用车主线。
磷酸铁锂在成本上较三元电池有着较大的优势。从正极材料,到电池系统,再到整车,甚至整个使用过程。降本路径来自于材料端价格不断下降和铁锂电池工艺水平的提升。以带电量 40 度电的小型车为例,三元电池价格约 4 万元,续航 350 公里;而磷酸铁锂电池的价格 3.2 万元,续航300公里;牺牲 50 公里理论续航(实际续航缩减20-30 公里)可以给车企带来约 8000 元降本空间。
而在使用端,全生命周期内铁锂车型较三元车型的平均年度使用成本低约 4300 元。因此,我们认为低端车型从三元转向铁锂,是车企和消费者共同的目标导向。
从工信部新车推荐目录来看,进入2020 年,铁锂电池在乘用车中的配套比例明显回升,最新推荐目录显示,乘用车中铁锂电池配套比例已经超过 20%。其中,上汽集团荣威 ei6 插电、荣威 eRX5 插电和名爵 MG6插电的改款版车型也确定更换为磷酸铁锂电池。这是车企对铁锂电池全新认知的变化,铁锂电池较三元电池节约成本,且对性能影响不大。插电混动车型本身带电量 15 度左右,电池重量 120 公斤,从三元换回铁锂,同等容量下,电池增重仅 10 公斤,续航里程影响 5 公里左右,但成本下降 3000 元。我们预计这一趋势将在 2020 年继续加强,铁锂在乘用车中的配套有望提速。
中国热销 MPV 电动化,磷酸铁锂电池有望复苏
五菱宏光引领,中国热门车型创造产销奇迹
在中国 汽车 工业发展的大进程中,自主车企始终处于被动的局面,但仍有一些车型成为老百姓口中的神车。之所以用“神车”这个词,是因为它们在车市激烈的竞争中脱颖而出,创造了销量神话和优质口碑。以五菱宏光为首的中国国产神车以高品质、低价格、开不坏、低成本的特点给消费者留下了深刻的印象,五菱宏光更是被誉为“秋名山神车”。
上汽通用五菱旗下的 A 级 MPV 车型五菱宏光首款车型 2010 年上市,定位成微型面包车。五菱宏光在动力性和经济性的完美平衡,以及在操控性和安全性上的实力表现,颠覆了人们对商务车的传统印象。自上市以来,该车连续 7 年霸占 MPV 细分市场销量排行榜冠军,巅峰时月销高达 8.25 万辆。2019 年,五菱宏光累计销量销量 37.5 万辆,在国内 汽车 销量中排名第四,在自主车型中排名第二,仅次于哈弗 H6。截止 2019 年底,五菱宏光系列车型累计销量高达 450 万辆,强大的用户积累、优秀的口碑反馈和极高的性价比是五菱宏光系列车型持续畅销的重要因素。
此外,上汽通用五菱旗下另一款专用车五菱荣光 2019 年销量也达到 16 万辆的规模,位列 19 年自主车型销量排行榜第 7 位。大微客五菱荣光自 2008 年推出首款车型,定位微型面包车,商货两用。
2012 年五菱荣光全面升级,其中加长款产品将整车长度延伸至 4490mm、宽度和高度分别为1615mm、1900mm,由原来的 7 座升级为 9 座,空间更大。经过三代改款,目前五菱荣光已经延伸出 V、S、加长版、单双排和小卡等多个版本。
自主车企是电动化主力,但 2019 年销量 top10 自主车型的电动化率却比较低,仅3 款车型有对应的电动车在售。自主车企并未有效利用热销车型的高销量、高口碑效应来开拓电动市场。一方面,基于油车平台的车型纯电话,在续航上会有一定的劣势;另一方面,油电车型同台竞争也是车企的考量因素之一。我们认为,车企更愿意推出基于纯电动平台的新车来打市场,但新平台不等于新品牌,热销品牌在消费市场的穿透效果要明显好于新品牌。
五菱宏光/荣光纯电版进推荐目录,有望带动铁锂电池装机回潮
2019 年下半年,上汽通用五菱开始了相关热门车型的电动化进程,五菱宏光和荣光两款神车领衔,双双进入工信部发布的第 326 批新车公示名单。两者均将推出高低续航版的纯电动车型,并细分为多功能版和运输版。从电池配套来看,五菱宏光高续航版本由宁德时代配套磷酸铁锂电池,电池参数是(335V/125Ah),折合带电量 41.88KWh。低续航版本由国轩高科配套磷酸铁锂电池,参数是(323V/105Ah),折合带电量 33.92KWh。五菱荣光由鹏辉能源独家配套磷酸铁锂电池,高续航版电池参数是(368V/113Ah),折合 41.58 度电,低续航版电池参数(314V/113Ah),折合35.48 度电。
继新车公示之后,两款神车很快进入工信部推荐目录。根据 2019 年第 11 批推荐目录,五菱荣光车型高续航版本310 公里,能量密度131Wh/kg;低续航版本260 公里,能量密度126Wh/kg。五菱荣光车型高续航版本41.6 度电,续航300 公里,能量密度125Wh/kg;低续航版本35.4 度电,续航 252 公里,能量密度 125Wh/kg。此外挂牌广西 汽车 的五菱牌厢式运输车续航里程为270 公里,由鹏辉能源提供磷酸铁锂电池配套。
上汽通用五菱基于神车五菱宏光和荣光燃油车,一共推出 3 个品牌,累计 10 个型号纯电动车。此外,在乘用车领域,上汽通用五菱也即将推出 E300/E300L 等低端乘用车型,有望打开小型车渗透空间。我们假设五菱宏光和荣光车型销量渗透率20%,叠加 E100/200 增量和 E300 新车型,上通五电动车转型有望带动铁锂电池增量超过5GWh。
BYD 刀片电池领衔,中高端乘用车试水铁锂电池
后补贴时代,车企对铁锂电池的接受到有了很大的提升,铁锂电池不仅在低端乘用车中广泛应用,中高端车型中也开始出现铁锂电池的身影。在中高端领域,比亚迪率先推出最新刀片电池,采用磷酸铁锂路线,系统能量密度最高达到 160Wh/kg,改款电池应用在旗下高端车型汉上,实际能量密度 140Wh/kg,最高续航达到605 公里,是铁锂车型续航的最大突破。
简单来说,所谓“刀片电池”,就是比亚迪开发的长度大于0.6 米的大电芯,是长电芯方案,通过阵列的方式排布在一起,就像“刀片”一样插入到电池包里面。将电芯进行扁长化涉及,提高电池包的集成效率。提升主要体现在动力电池包的空间利用率,体积能量密度可提高50%;重量能量密度也有所提升。另一方面,长电芯方案两侧直接与外壳相接,能够保证电芯具有足够大的散热面积,可将内部的热量传导至外部,从而匹配较高的能量密度。体现在成本上,刀片电池较传统结构电池成本下降 10%左右,能够有效节约电池成本。
多款铁锂车型即将上市,LFP 动力电池增量空间广阔
三元电池对铁锂电池份额的挤压始于 2016 年,在乘用车领域,三元迅速取代铁锂,装机份额逐渐提升。在专用车领域,三元的装机量也有较大增长,而客车领域由于政策的原因,未放开三元电池配套。2019 年全年,我国动力电池装机量达到62GWh,乘用车装机量 42GWh,客车装机量14.55GWh,专用车装机量5.4GWh,乘用车已经成为拉动电池装机的主要领域。因此三元的份额在装机总量中快速提升,达到 40GWh,装机份额65%,较 18 年增加10GWh;而铁锂电池的装机量仅 20GWh,装机量连续三年出现增长瓶颈,装机份额下降至32%。
基于补贴变动向成本导向转变,我们坚定看好铁锂在乘用车领域的配套的持续提升。铁锂在新能源 汽车 应用的复苏是一个长期的过程,在动力装机量中的份额会维持一个稳定的比例。从单一车型来看,五菱荣光/宏光神车电动版本产销规模有望达到 10 万辆级别,贡献装机量达到 4GWh;而从长期看,我们预计国内 50%的 A00 车型,30%的 A0 车型,10%的 A 级车以及30%的插电车型有望配套 LFP 电池,以 2020 年各车型销量预测数据计算,对LFP 电池装机的增量高达 10GWh,铁锂装机量达到30.37GWh,2021-2022 年分别达到36GWh 和 42.6GWh。而随着全球主流车企低端车型也开始转向 LFP 电池,我们认为长期来看,LFP 电池的在新能源 汽车 领域的增量空间更可观。
LFP 产业链相关标的梳理
磷酸铁锂产业链涉及上游原材料磷酸、磷酸铁、碳酸锂,中游正极材料磷酸铁锂以及下游磷酸铁锂池和整车,后端市场还包括动力废旧磷酸铁锂电池拆解、梯次利用和湿法回收。从产业集中度和企业纯度来看,正极和电池厂业务相对更纯粹,是投资首选环节。
电池环节
宁德时代:铁锂电池份额第一,发力乘用车
宁德时代是电池环节绝对龙头,三元和铁锂电池并行。2019 年 32GWh 装机量中,21GWh 为三元,11GWh 为铁锂。铁锂电池主要配套大巴车,自 2019 年下半年起,公司铁锂电池开始向乘用车型配套,这次向特斯拉提供铁锂电池有望进一步奠定公司在铁锂细分领域的行业地位。在三元电池方面,公司目前已经与海内外多家主流车企建立起合作关系,并在欧洲设立了电池工厂,未来公司有望受益于欧洲电动车爆发从而进一步巩固市场份额,高成长型逻辑有望持续兑现。
鹏辉能源:专注 LFP 动力电池的低成本玩家
公司是小而美的全能型锂电池综合供应商,在消费、动力(含轻型动力)、储能和电动工具领域均有涉及。动力电池方面,公司 19 年深度绑定上汽通用五菱,为宝骏 E100/200 系列提供了 60%的电池配套,同时已经拿下上通五五菱荣光纯电车型独家配套。2019 年动力电池装机量 0.7GWh, 排名国内前 10。公司在动力电池业务上已经将重心转向铁锂电池,同时在储能板块对铁塔基站备用电源实现供货,并积极拓展欧洲储能市场。未来公司将受益于动力、3C 数码和储能等电池需求爆发,盈利弹性强。
正极环节
德方纳米:LFP 正极材料市场占有率第一,低成本方案不可复制
公司是目前 A 股最纯正的磷酸铁锂正极材料标的。2018 年,纳米磷酸铁锂材料收入 10.1 亿元, 占到公司营收的 96.13%。公司是宁德时代铁锂材料的核心供应商,磷酸铁锂正极材料出货量迅速增长,2019 年出货量 2.2 万吨,其中对宁德供应量比达 72%,占其采购量的 60%。公司铁锂正极在工艺技术和成本上行业领先,采用的“自热蒸发液相合成纳米磷酸铁锂技术”,原材料从碳酸锂、硝酸、铁源、磷酸出发,与行业传统的“碳酸锂+磷酸铁”水热法有显著区别,低成本路径不可复制。
湘潭电化:潜在铁锂正极低估标的
公司是湘潭电化系湘潭市国资委下属控股企业,主营业务为生产销售电解二氧化锰和新能源电池材料、城市污水集中处理、工业贸易等。是湖南杉杉、青岛乾运、桑顿新能源等二次电池生产企业的优质供应商。公司参股裕能新能源16%的股份,裕能新能源是磷酸铁锂核心供应商之一,客户端涉及宁德时代、比亚迪和亿纬锂能。裕能新能源当前拥有 3 万吨磷酸铁锂正极产能,2019 年出货量超过1 万吨,销售渠道由湘潭电化帮助搭建。公司和德方纳米共处铁锂正极第一梯队,产品压实密度高。
光华 科技 :LFP 新星,循环产业链已成
公司主营业务 PCB 电子化学品和化学试剂,2017 年进军锂电材料行业,先后布局电池回收、磷酸铁锂磷酸铁项目、铁锂梯次利用项目。2019 年上半年锂电材料业务规模占公司比重达到 18%, 较 18 年底提高 5 个百分点,预计 2019 年全年占比达到 19%。公司已经建成年产 1 万吨磷酸铁产能,基于电子化学品湿法提纯技术,公司磷酸铁品质优越,产品售价高于市场。磷酸铁锂正极产线建成,目前正在对验证中。在后端市场,公司布局动力电池回收业务,是五家示范企业之一。公司具备从梯次利用到湿法处理全链条能力,是电池报废放量的直接受益者。铁锂电池的梯次利用业务逐渐放量,成为公司收入和利润的增长点。
中国宝安:子公司贝特瑞是 LFP 正极材料龙头之一
公司持有贝特瑞 75%股权,后者是正极领域后起之秀,成长速度亮眼。目前贝特瑞主要正极材料产品包括 NCA 单晶品和多晶品以及 LFP 系列。公司 2015 年起投产正极材料磷酸铁锂,2018 年成为国内磷酸铁锂市场排名第三的企业,当前产能 3 万吨,常州的 1.5 万吨产能预计年中投产,19
年出货量约 1.3 万吨。公司正极材料占营收比也快速上升,从 2015 年的 9.70%到2018 年的 36.80%, 逐渐成为公司主要营收业务。随着未来公司产能的进一步释放,正极材料对公司盈利情况的拉动将 更加明显。
原标题:磷酸铁锂电池迎来强复苏
全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社
国内有没有做得比较好的锂电池培训的机构?
目前国内做锂电池培训的机构不多,一些都是培训机构举办的,实用性不强,还有一些是锂电池厂家开展的培训,这种培训比较好,非常实用,具有针对性,拓尔德锂电池培训学院你可以去了解一下,据说这家机构团队在锂电池行业十五年,一直从事锂电池的研发、生产及培训,希望对你有帮助。请采纳,谢谢!
学锂电池维修怎么样?哪里可以学锂电维修技术?
锂电池维修现在的市场很广阔,最近电动车国标,以及汽车补贴退补等等政策消息都在传递未来是锂电池的,锂电池的发展趋势不可小觑。而且目前锂电池维修技术专业人才非常匮乏,所以有极大的需求。
嗯如果你想学习这个锂电池维修技术的话,可以看看小锂哥锂电池维修培训。拥有十余年的实践经验以及国家锂电修复技术专利,比较靠谱,实用。他们有扶持小本创业开维修店的。
锂离子电池
锂电池属于耐用品,所以并不娇贵,大家可坦然待之,并不需要给其配上昂贵的原装座充,一般有品牌的普通的座充即可,价格在15-20元,省去了直充需要依赖手机的限制。座充有快充(2-3小时左右)和慢充(10小时上下)之分,如果电池较多选择快充比较好。
``````````````````````````````````````放电
它的总反应可表现为Li + MnO2 = LiMnO2
另外,由于锂电池的特性,并不需要进行放电和过充操作。电池的寿命完全取决于有效充电时间的多少。也就是说,即使你只用掉一半就开始充电对电池寿命也并无影响。
需要补充的是,锂电池不需要进行放电操作,电池的寿命完全取决于有效充电时间的多少。也就是说,即使你只用掉一半就开始充电对电池寿命也并无影响。
以下是转载:
为了便于阅读,小标题列举如下:
1.认识记忆效应
2.电池需要激活吗
3.前三次要充12小时吗
4.充电电池有最佳状态吗
5.真的是充电电流越大,充电越快吗
1.认识记忆效应
电池记忆效应是指电池的可逆失效,即电池失效后可重新回复的性能.记忆效应是指电池长时间经受特定的工作循环后,自动保持这一特定的倾向.这个最早定义在镍镉电池,镍镉的袋式电池不存在记忆效应,烧结式电池有记忆效应.而现在的镍金属氢(俗称镍氢)电池不受这个记忆效应定义的约束.
因为现代镍镉电池工艺的改进,上述的记忆效应已经大幅度的降低,而另外一种现象替换了这个定义,就是镍基电池的"晶格化",通常情况,镍镉电池受这两种效应的综合影响,而镍氢电池则只受"晶格化"记忆效应的影响,而且影响较镍镉电池的为小.
在实际应用中,消除记忆效应的方法有严格的规范和一个操作流程.操作不当会适得其反.
对于镍镉电池,正常的维护是定期深放电:平均每使用一个月(或30次循环)进行一次深放电(放电到1.0V/每节,老外称之为exercise),平常使用是尽量用光电池或用到关机等手段可以缓解记忆效应的形成,但这个不是exercise,因为仪器(如手机)是不会用到1.0V/每节才关机的,必须要专门的设备或线路来完成这项工作,幸好许多镍氢电池的充电器都带有这个功能.
对于长期没有进行exercise的镍镉电池,会因为记忆效应的累计,无法用exercise进行容量回复,这时则需要更深的放电(老外称recondition),这是一种用很小的电流长时间对电池放电到0.4V每节的一个过程,需要专业的设备进行.
对于镍氢电池,exercise进行的频率大概每三个月一次即可有效的缓解记忆效应.因为镍氢电池的循环寿命远远低于镍镉电池,几乎用不到recondition这个方法.
建议1:每次充电以前对电池放电是没有必要,而且是有害的,因为电池的使用寿命无谓的减短了.
建议2:用一个电阻接电池的正负极进行放电是不可取的,电流没法控制,容易过放到0V,甚至导致串联电池组的电池极性反转.
2.电池需要激活吗
回答是电池需要激活,但这不是用户的要做的事.我参观过锂离子电池的生产厂,锂离子电池在出厂以前要经过如下过程:
锂离子电池壳灌输电解液---封口----化成,就是恒压充电,然后放电,如此进行几个循环,使电极充分浸润电解液,充分活化,以容量达到要求为止,这个就是激活过程---分容,就是测试电池的容量选取不同性能(容量)的电池进行归类,划分电池的等级,进行容量匹配等.这样出来的锂离子电池到用户手上已经是激活过的了.我们大家常用的镍镉电池和镍氢电池也是如此化成激活以后才出厂的.其中有些电池的激活过程需要电池处于开口状态,激活以后再封口,这个工序也只可能有电芯生产厂家来完成了.
这里存在一个问题,就是电池厂出厂的电池到用户手上,这个时间有时会很长,短则1个月,长则半年,这个时候,因为电池电极材料会钝化,所以厂家建议初次使用的电池最好进行3~5次完全充放过程,以便消除电极材料的钝化,达到最大容量.
在2001年颁布的三个关于镍氢.镍镉和锂离子电池的国标中,其初始容量的检测均有明确规定,对电池可以进行5次深充深放,当有一次符合规定时,试验即可停止.这很好的解释了我说的这个现象.
那么称之为"第二次激活"也是可以的,用户初次使用的"新"电池尽量进行几次深充放循环.
然而据我的测试(针对锂离子电池),存储期在1~3个月之内的锂离子电池, 对它进行深充深放的循环处理,其容量提高现象几乎不存在.(我在专题讨论区有关于电池激活的测试报告)
3.前三次要充12小时吗
这个问题是紧扣上面的电池激活问题的,姑且设出厂的电池到用户手上有电极钝化现象,为了激活电池进行深充深放电循环3次.其实这个问题转化为深充是不是就是要充12个小时的问题.那么我的另一片文章"论手机电池的充电时间"已经回答了这个问题.
答案是不需要充12小时.
早期的手机镍氢电池因为需要补充和涓流充电过程,要达到最完美的充饱状态,可能需要5个小时左右,但是也是不需要12个小时的.而锂离子电池的恒流恒压充电特性更是决定了它的深充电时间无需12个小时.
对于锂离子电池有人会问,既然恒压阶段锂离子电池的电流逐渐减小,是不是当电流小到无穷小的时候才是真正的深充.我曾经画出恒压阶段电流减小对时间的曲线,对它进行多次曲线拟合,发现这个曲线可以用1/x的函数方式接近与零电流,实际测试时因为锂离子电池本身存在的自放电现象,这个零电流是永远不可能到达的.
以600mAh的电池为例,设置截至电流为0.01C(即6mA),它的1C充电时间不超过150分钟,那么设置截至电流为0.001C(即0.6mA),它的充电时间可能为10小时---这个因为仪器精度的问题,已经无法精确获得,但是从0.01C到0.001C获的容量经计算仅为1.7mAh,以多用的7个多小时来换取这仅仅的千分之三不到的容量是没有任何实际意义的.
何况,还有其它的充电方式,比如脉冲充电方式使锂离子电池来达到4.2V的限制电压,它根本没有截止最小电流判断阶段,一般150分钟后它就是100%充饱了.许多手机都是用脉冲充电方式的.
有人曾经用手机显示充饱后,再用座充进行充电来确认手机的充饱程度,这个测试方法欠严谨.
首先座充显示绿灯不是检测真正充饱与否的一个依据.
检测锂离子电池充饱与否的唯一最终的方法就是测试在不充电(也不放电)状态时的锂离子电池的电压.
所谓恒压阶段电流减小其真正的目的就是逐渐减小在电池内阻上因充电电流而产生的附加电压,当电流小到0.01C,比如6mA,这个电流乘与电池内阻(一般在200毫欧之内)仅为1mV,可以认为这时的电压就是无电流状态的电池电压.
其次,手机的基准电压不一定等于座充的基准电压,手机认为充饱的电池到了座充上,座充却不认为已经充饱,却继续进行充电.
4.充电电池有最佳状态吗
有一种说法就是,充电电池使用得当,会在某一段循环范围出现最佳的状态,就是容量最大.这个要分情况,密封的镍氢电池和镍镉电池,如果使用得当(比如定期的维护,防止记忆效应的产生和累计),一般会在100~200个循环处达到其容量的最大值,比如出厂容量为1000mAh的镍氢电池用了120次循环后,其容量有可能达到1100mAh.几乎所有的日本镍氢电池生产商的技术规格书中描述镍基电池的循环特性的图上我都能看到这样的描述.
镍基电池有最佳状态,一般在100~200循环次数之间达到其最大容量
对于液态锂离子电池,却根本不存在这样一个循环容量的驼峰现象,从锂离子电池出厂到最终电池报废为止,其容量的表现就是用一次少一次.我在对锂离子电池做循环性能的时候也从来没有看到过有容量回升的迹象.
锂离子电池没有最佳状态.
值得一提的是,锂离子电池更容易受环境温度的变化而表现不同的性能,在25~40度的环境温度会表现其最好性能,而低温或高温状态,他的性能就大打折扣了.要使你的锂离子电池充分展现它的容量,一定要细心的注意使用环境,防止高低温现象,比如手机放在汽车的前台上,中午的太阳直射很容易就可以使其超过60度,北方的用户的电池待机时间,同等网络情况下,就没有南方的用户长了.
5.真的是充电电流越大,充电越快吗
"论手机电池的充电时间"一文中已经讲了这个问题,对于恒流充电的镍基电池,可以这么说,而对应锂离子电池,这个是不完全正确的。
对于锂离子电池的充电,在一定电流范围内(1.5C~0.5C),提高恒流恒压充电方式的恒流电流值,并不能缩短充饱锂离子电池的时间.