本文目录一览:
- 1、电池材料培训有哪些课程
- 2、锂电池生产工序安全操作规程
- 3、锂电池的工序有哪些?
- 4、锂电池是怎么制作出来的?为什么它能作为手机电池?
- 5、在哪里可以学锂电池制作?
- 6、蜂巢能源-陈少杰:《全固态锂电池技术研发挑战与思考》
电池材料培训有哪些课程
电池、电池产品基础知识
电池正极材料知识培训
光电化学(化学类太阳能电池)
热电化学(热转电材料)
电催化(电解水产氢、氧,还原二氧化碳、转氨等等)
电池(包括锂离子电池、锂金属电池、钠离子/金属电池等)
电容器(化学类的超级电容器)
腐蚀(主要研究防腐材料)
电去离子(去除污水中金属离子)
实际上,电化学大类中,各导师的研究方向远不止以上这些。还有许多导师研究理论方向,比如研究表面活性剂界面上双电层电容具有的特性、电化学体系与谱学联用以及电化学交流阻抗谱理论公式推导与分析等等。
锂电池生产工序安全操作规程
1、主题内容
本规程规定了铅酸蓄电池生产过程中安全操作、用电安全,对其主要方面的问题提出具体要求。
2、适用范围
本规定适用铅酸蓄电池各工序的主要安全操作。
3、操作规程
3.1每位员工都必须穿戴公司发放的口罩、手套、工作服等劳保用品,不断强化自我劳动保护意识。
3.2工作时,必须按规定启动环保设备,注重环保设备的检查、保养工作,保证环保设备的正常运行
3.3搞好车间工作台、地面及各种设备、设施和环境的清洁、卫生工作,做到勤擦、勤扫、勤洒水、勤清除,保证车间整洁文明。
3.4车间内各类设备、设施应按规定进行正常的维护保养,保证各种生产设备的正常运行
3.5氧气、煤气瓶的存放点必须远离火源三米以上,严禁用带油污的手、板手等工具接触氧气,煤气瓶,避免造成爆炸等危险。
3.6使用液化气时,喷枪出现回火,应立即将橡皮管弯曲折扣住,以防止爆炸事故。
3.7配制稀硫酸溶液时,只能将一定量的纯水倒入容器中,再将一定量的浓硫酸徐徐倒入盛有水的容器中,同时不断搅拌,温度一般不允许超过60℃。如超过可暂停加浓酸。温度降到常温,方可使用。在操作与酸有关的工作中,避免造成硫酸的爆起烧伤人体,若不慎把硫酸液溅到皮肤上,应速用肥皂水或清洁水进行稀释冲洗,严禁干擦皮肤。
3.8充放电时严格掌握时间,防止过充或过放电,充放电作业区不准有明火出现,防止氢气爆炸,墙上应有“严禁烟火”等字样,各种电器线路必须合理设置,避免车轮碾压或其它损伤,以免短路起火烧伤人体及设备、房屋。
3.9原材料、产成品及运输车辆等做到定置定位,整齐摆放,安全通道畅通无阻。各种原材料,产成品及设备、设施的搬动、转运应小心,产品的加工应认真仔细,做到“三不伤害”,即不伤害自己,不伤害别人,不伤害各种财物。
3.10下班时应关闭好车间所有水、电、气、火源及门窗,做好防火、防盗、防风雨、雷电等工作,确保公司各系统安全。
4、安全用电
4.1电线路设计、安装、线路负荷必须严格按电业部门要求执行,安装应规范化,不得私接电源线。
4.2电器设备装置应经国家指定的检验机构检验合格或具有认可,应符合相应环境要求和使用等级要求。
4.3设备、电气线路,应符合线路的负荷能力,任何电气装置都不应超负荷运行或带故障使用。
4.4电设备应考虑三相电源平衡,改善线路的负载能力。
4.5有配电箱,开关箱应每月进行一次检查、维修。检查、维修人员必须是专业电工,工作时必须穿戴好绝缘用品,必须使用电工绝缘工具。
4.6检查、维修配电箱、开关箱时,必须将其前一级相应的电源开关分闸断电,并悬挂停电标志牌,严禁带电作业。
4.7各种电气箱内不允许放置任何杂物,并保持清洁,箱内不得挂接其他临时用电设备。
4.8 熔断器的熔体更换时,严禁用不符合原规格的熔体代替。
4.9电缆线路应采用穿管埋地或沿墙、电杆架空敷设,严禁沿地面明设。
4.10配室倒闸操作,必须服从电力调度命令执行。各低压配电闸刀不得随意开和关。以防造成设备和人身安全事故。
4.11气设备的测量、维修、保养,不允许带电操作,并做好保护措施,应有两人同时进行,一人操作、一人监护。
4.12放电电源表示识应清楚,布线应规范。防止重压拉断。
4.13发生漏电的设备,应装配漏电保护器,预防触电事故发生。
锂电池的工序有哪些?
3C锂电池的制作工艺分为四道程序:
基础是极片制作
核心是电芯组装
关键性工序是电芯激活,包含着电池的化成、分容和测试
最后一步是电池封装,关系着电池的成品质量。
在3C锂电池的制作中,每一个步骤都直接影响着电池的质量和安全性。3C锂电池的性能测试包括基本性能、安全性能、环境性能、电化学性能几大类,弹片微针模组在测试中可通过1-50A范围内的电流,过流能力强大,还有着平均20W次的使用寿命,可有效提高3C锂电池测试效率,保障测试高效安全进行。
锂电池是怎么制作出来的?为什么它能作为手机电池?
经过多年发展,锂电池产业已经形成了专业化分工程度高的完整产业链。随着国家政策的支持,以及电动车新国标的出台,未来锂电池将是电动出行工具的首选。那么,优质的电动车锂电池是如何制作的?老师傅告诉你!
第一步:配料
高真空全自动搅拌材料10小时,将锂电池所需的材料分散均匀,提高电池的一致性和综合性能。为什么要这么做呢?因为配料是锂电池制作的核心区域,配料不好直接影响到锂电池的性能。
第二步:涂布
采用自动上料系统,采用自动调刀系统,在线测厚系统,将正负极片涂覆均匀。为什么要这么做呢?因为涂布是锂电池制作的根本,涂布决定电池的一致性。
第三步:对辊
正负极片涂覆完后,正负材料相对稀松,需要给极片一定的压力,将正负极材料压实到一定范围。
第四步:分条
根据电池的型号,需要将正负极片分切成需要的宽度。如18650锂电池,极片宽度在56-58mm之内。
第五步:制片和卷绕
采用全自动制片机,将正负极耳焊接到正负极片上。并采用全自动卷绕机,将正负极片和隔膜一起卷绕成圆柱形状。
第六步:点底滚槽和真空烘干
卷芯放入钢壳内,自动焊接负极耳,并自动滚槽。另外,再经过高真空高温烘烤,把少量水分烘干,这样锂电池性能才有保障。
第七步:化成分容
锂电池在出货前需要对其进行充放电测试,出厂前电池是带点状态的。
第八步:组装锂电池
全自动焊接机,将多只电池组合用连接片焊接在一起,然后装上线路板,在进行老化测试,检验出货。
总之,优质的电动车锂电池制作的过程中非常严谨,因为只有这样才能保证其品质。而对于用户来说,选择锂电池更应该谨慎,不要贪图便宜,以免遇到劣质的锂电池。
在哪里可以学锂电池制作?
锂电池制作是一种新工艺技术,需要学习广泛的专业知识和技术。
建议找专业锂电池人士,或者专业的工厂学习,别忘了不要被所谓的培训班所忽悠。也可以点我了解。
蜂巢能源-陈少杰:《全固态锂电池技术研发挑战与思考》
7月7日,2021中国国际锂电产业大会(简称金砖锂电论坛)在上海 汽车 会展中心顺利召开。本届金砖锂电会议为期两天,主题为以“新技术、新应用、新发展”为主题,采用“会议论坛+展览展示+体验营销”三位一体的创新模式,多项重点活动同期同地举办,充分协同联动,品牌效应和影响力大幅提升。
蜂巢能源 科技 有限公司的固态电池研发总监-陈少杰出席论坛并发表主题演讲——《全固态锂电池技术研发挑战与思考》。
以下为演讲实录:
各位专家、各位老师,上午好!非常荣幸有这个机会和大家分享和交流,因为之前我很长一段时间在中科院工作,后面加入了蜂巢,所以接下来我将结合这两个工作单位的工作经验,同大家进行汇报。
一、背景介绍。
固态电池主要是有几方面的优势:
1、固态电解质替代了易燃易爆的电解液,所以它相对比较安全。
2、固态电解质的非流动性,可以实现电芯内部的串联、升压,一方面可以降低电芯的包装成本,另一方面可以提升体积能量密度。
3、因为它比较安全,所以在PACK层级可以不用或少用冷却系统,进一步提高空间利用率,它也被认为可以匹配更高压的正极材料,同时可以使锂金属负极成为可能。
正因为它有这些优点,所以国内外对技术展开了广泛的研究,就全固态技术而言,最具代表性的企业有丰田、三星等。
从专利的申请趋势来看,其实70年代开始,欧洲和美国率先在聚合物电解质方面开始了申请。2000开始,大规模的申请在无机固体电解质材料方面,主要是在日本。
中国是2010年以后才有无机固体电解质的大规模申请,近几年也呈现爆发式的增长,可见技术的热度。
在产业界也呈现了对该技术的高度热情和关注,一些非常著名的公司、伟大的公司,包括丰田、大众、福特、宝马、奔驰等等,都对该技术进行了投资和布局,丰田更是计划这个月在东京奥运会展示装有全固态电池的概念车。
回过头来看,固体电解质的类型目前研究比较多,并且有产业化尝试的有三类:硫化物、氧化物、聚合物。
室温电导率方面,硫化物比较高,氧化物次之,聚合物最低。
二、聚合物电解质体系全固态电池。
聚合物最具典型的代表是PEO类,通常认为氧原子和锂离子络合解离再络合的形式进行传导,PEO具有比较高的结晶度,所以室温下自由移动体积比较小,通常电导率比较低,只有10的负6次。
常用的改性方式是通过加入无机的填料,包括导离子的快离子导体,以及不导离子的惰性填料。
通过引入无机电质可以形成两方面的效益:
(1)通过路易斯酸碱理论可以提高锂离子的迁移数。
(2)形成交联中心,降低PEO洁净度,提高电导率以及机械性能。
这方面之前做过比较多的研究,整个来看电导率大概可以达到10的负4次水平。
除了无机的复合,也可以通过分子结构的设计层面来对它进行改性,通过交联、接枝、共聚等等,形式上可以采用热固化、光固化的形式。比较遗憾的,目前电导率还是没有超过10的负3,尤其在室温条件下。
在聚合物全固态原型锂电池的验证方面,曾经我们也做过一个工作,拿磷酸铁锂的极片表面直接涂布共聚的小单体,利用光或热进行固化,来构建正极和电解质一体化的结构,降低界面阻抗。
比较遗憾的,电解质的电导率比较低,软包电池只能在60度下面才有比较好的电池性能,进一步也利用聚合物的非流动性来验证和实现了内串结构。确实可以一个包装,一个电芯封装内实现内部升压。
在产业化方面,涉及比较多的就是薄弱雷(音)技术,包括三千辆的出租车,以及最近在梅赛德斯、奔驰上电动公交车上的应用,他们采用的生产方式主要是挤压成形,进行卷对卷大规模的生产。
整个电芯采用磷酸铁锂为正极,PEO为电解质,金属锂为负极,整个电池模组上不需要冷却系统,整个电芯工作是在60-80度下才能工作,事实上在这个温度下,聚合物属于一种熔融状态,所以缺乏一定的机械强度,最近因为发生了一些绝缘短路的事件,进行了召回。
总体而言,聚合物的优势在于分子结构设计比较灵活,想象空间比较大。另外它的工艺比较简便,对兼容稳定性比较好。
具备挑战是锂离子的传输性能不够高,尤其是窗口比较窄,在锂离子输运机制、动力学和宏观性质的基本认识还存在着一些问题。
三、氧化物电解质体系全固态电池。
在座有很多专家,我说得不对还请指正,氧化物主要类型是钙钛矿型、NASICON型和石榴石型。
钙钛矿型典型的代表是LLTO,通常离子电导率比较高,缺点是对金属锂接触不稳定,锂可以把四价钛还原成三价。
NASICON的典型代表是LATP、LAGP,通常电导率只有10的负4次,但是稳定性比较好,而且电化学窗口比较宽,同时粉体比重相对比较轻。它的缺点也很明显,电导率比较低,而且做成陶瓷电解质薄弱韧性不足,对锂不稳定。
LLZO是典型的石榴石型的代表,电导率比较高,可以达到10的负3次,电化学窗口也比较宽。但是合成价格比较高,另外比重比较大,而且片材比较脆,空气中也会有些副反应。
蜂巢能源在氧化物方面,包括粉体和陶瓷片也有积累,进行了相应的研究,在氧化物全固态锂电池验证方面做过一个工作,拿LAGP陶瓷片作为电解质隔膜,同时正极用磷酸铁锂,负极用金属锂,并用PEO进行保护。
整个电池在60度工作温度下,有非常好的循环,但是这里要提到一点,陶瓷片如何做薄,把比重减轻是非常大的技术挑战。
在产业化方面,氧化物主要还是日本、韩国有比较多的研究,主要他们在微型器件上,包括传感器、电脑芯片等方面都有一些全固态电池的应用。
当然TDL公司也采用有机、无机复合的方式来制造软包电池,也可以制作2安时、4安时的软包,但是电芯需要在温度比较高的环境下进行工作。
右边的图是前段时间非常火的Quantum Scape技术,技术的核心是把陶瓷片做薄,做得基本可弯曲,单片电池表现出非常好的电池性能。
我认为电池要做大还是有一定的难度,所以整体而言氧化物稳定性是非常好的优势,存在的挑战是室温电导率比较低,颗粒比重比较重,成膜性不好,部分对空气敏感,而且堆叠技术存在一定的困难。
四、硫化物电解质体系全固态电池。
硫化物电解质有Thio-lisicon(音)体系,通常分为三元体系、二元体系。
1、三元体系。
以硫化锂和五硫化二磷以外,再引入第三种组分,通常是硫化锗、硫化硅、硫化锡、硫化铝这些材料,可以构建三维离子通道,导电率比较高。
但是硫化锗、硫化硅这些材料非常昂贵,一克要四五百块钱,而且很多公司由于储存的问题已经停产,所以个人认为这类材料要产业化,可能成本控制上会是比较大的挑战。
2、二元体系。
二元体系顾名思义以两种原材料:硫化锂、五硫化二磷,硫化锂占硫化物电解质成本达到70%以上,甚至达到90%,所以从这里可以思考,如何把硫化锂的用量进行减少,来进一步控制成本。
3、硫银锗矿。
最具典型的代表就是锂六磷硫五氯,三星和日立造船公开的报道,都是采用了该种电解质。
制备方法上,通常有球磨法、熔融萃取法、液相法,以及最近的气相法,我觉得这些都是非常好的进展,可以进一步从放量制造的工艺上降低成本。
最后要提到一点是硫化锂的合成优化,事实上由于整个产业链没有形成,大家对硫化磷的合成方案没有进行过多的关注,实际上硫化锂有很多种合成方案。
从电解质材料降本的维度思考,一方面可以从原料硫化锂合成方案进行优选,以及达到规模化,完全可以做到9000元每公斤以下,进一步结合电解质组成设计的优化,把成本再降到5000元每公斤以下,进一步利用规模化效应降到100万每吨以下是完全有可能的,这是成本控制方面的思考。
当然还有个稳定性,我们都说硫化物不稳定,实际生产过程中我们就要有面临溶剂的稳定性,包括干房的稳定性。
我们以前的工作表明通过非极性溶剂的选择以及元素掺杂,能够一定程度上进行改善。
还有对锂稳定性,二元体系比三元体系更加来得稳定,因为它是可逆反应。另外通过材料的改性,比如碘化铝掺杂314(音)体系,也可以显著提升稳定性,同时也可以通过界面改性,包括锂金属的保护等等手段,都可以进行相应的改性。
产业化方面,对外报道比较多的是Solid Power,采用传统锂电池的制备方式。按照他们的说法,他们把注液、化成和排气制成设备和场地全部减下来,计算出来的成本可以降低34%。
因为固态电芯相对比较安全,所以PACK层面不需要冷却系统,也可以相应降低9%,整个电芯采用NMC三元高镍系列,负极是高含硅负极、金属锂,电解质是硫化物。
他们计划今年的Roadmap是340瓦时/公斤,720瓦时/升,计划2026年进行量产,认为锂金属会比2026年晚。
硫化物最大的优势是室温电导率比较高,质量较柔软。挑战是稳定性比较差,确实难度非常大,工程化技术非常难。
另外一点通常被疏忽的,全固态电池真正在工作过程中,需要外界的束缚压力,目前我们国内对这方面研究比较空白,在日本方面从电芯、模组、PACK方面不同的维度提出了解决方案,可以供我们参考。
接下来跟大家汇报一下蜂巢能源在全固态方面的进展,首先电解质材料,我们也开发了在干房中两小时内保持96%的电导率,已经形成了百克级的能力。
进一步我们也做了正极,开发了4毫安时每平方厘米的正极极片,在室温条件下是0.1C充放放,首效可以达到96.3%,克隆量可以达到220,这个0.1C倍率完全可以接近现在液态的水平。
循环方面,我们选择了1/3 C倍率。这个循环来看,目前也是可以有比较好的循环,但是倍率方面我们确实要下一步重点的工作。
同时我们也想把极片做得更厚,做成5毫安时每平方厘米厚电极,很遗憾首效下降了,比容量也有所损失,这是接下来要攻关的难题。
电解质膜方面,我们也用了湿法涂布的方式,室温条件下厚度可以达到20-30微米,跟三星报道的数据基本接近,蜂巢能源从材料工艺、组件、器件、测试方面形成了积累,也申请了专利54项。
目前开发的AH级全固态锂电池,正极采用三元高镍材料,负极是以硅基的合金材料为主,电解质和电解质膜是我们自主开发的,能量密度可以达到320瓦时/公斤,安全性上面有充分保障,也通过了针刺以及进行了一些裁剪火烧的演示。
四、总结及展望。
无论是氧化物、聚合物,硫化物都有各自的优缺点,我们认为关键材料固体电解质的革新和突破是加速全固态技术应用的关键,我们也很欣喜地看到有卤化物等新型的材料出现,给了我们更大的选择。
除了材料方面,还需要解决加工层面的问题,主要包括四个方面:
(1)改善材料和界面的控制。
(2)解决加工的挑战和成本。
(3)表现出超越先进锂离子电池的性能。
(4)保持固态电池组的最佳堆叠压力,而不影响成本和能量密度。
我们认为以3C消费类、特种电池等应用需求为目标的全固态电池会在短期内实现,事实上在日本航天航空领域已经实现,而满足电动 汽车 所需性能、成本和可制造性的全固态电池可能需要更多的时间。
我们蜂巢能源作为定位于因创新而前进,打造伟大公司的企业,愿意持续关注这个技术的发展,谢谢大家!