本文目录一览:
三元锂电池能量密度
能量密度关于能量密度,这是一个影响新能源汽车续航表现的指标。在这个参数上,磷酸铁锂电池电芯的能量密度只有110Wh/kg左右,而三元锂电池电芯一般是200Wh/kg。换句话说,同样重量的电池,三元锂电池的能量密度是磷酸铁锂电池的1.7倍,可以给新能源汽车带来更长的续航时间。安全新能源汽车有一点让车主谈色变,那就是自燃。每年都有很多新能源汽车自燃的事故。归根结底,这和电池的稳定性有关。在这方面,磷酸铁锂电池是目前热稳定性最好的动力电池,在安全性上比三元锂电池有绝对优势。磷酸铁锂电池的电热峰值高达350°C,电池内部化学成分需要达到500~600°C才开始分解。但是三元锂电池的热稳定性很一般,300℃左右就会开始分解。温差效率当然,磷酸铁锂电池虽然耐高温,但是三元锂电池的耐低温性能更好,这是制造低温锂电池的主要技术路线。在零下20C,三元锂电池可以释放70.14%的容量,而磷酸铁锂电池只能释放54.94%的容量。而且因为在低温下,三元锂电池的放电平台远高于磷酸铁锂电池的电压平台,启动更快。充电效率一方面,三元锂电池效率更高。锂电池采用限流限压法充电,即第一阶段恒流充电,此时电流大,效率高。恒流达到一定电压后,进入第二阶段恒压充电。此时电流小,效率低。所以衡量两者的充电效率,用的是恒流充电容量与电池总容量的比值,称为恒流比。实验结果表明,10°C以下充电时两者差别不大,10°C以上充电时距离会拉大,20°C充电时三元锂电池恒流比52.75%,磷酸铁锂电池恒流比10.08%,前者是后者的5倍。循环寿命磷酸铁锂电池的循环寿命优于三元锂电池。三元锂电池理论寿命为2000次循环,但基本达到1000次循环时,容量下降到60%。即使是业内优秀的特斯拉,3000次循环后也只能保持70%的电量,而磷酸铁锂电池同样的循环后仍能有80%的容量。写在最后相比之下,磷酸铁锂电池安全、寿命长、耐高温;三元锂电池具有重量轻、充电效率高、耐低温等优点。所以,两者差异的各自适应性,才是两种雄性共存的原因。
新能源汽车的电池能量密度一般有多少?
目前用于电动汽车的锂电池能量密度约在100~150Wh/kg左右,比铅酸电池高出2~3倍,且循环性要远远高于铅酸电池,所以目前锂离子电池是开发电动汽车的首选电池。
注意:
能量密度,指的是单位质量或单位体积的电池所放出的能量,即体积比能量或质量比能量。能量密度和功率密度都是一个会变化的量,电池在使用多次以后能量密度会降低(电池容量衰减),功率密度也会下降,并且这两个量也是随着环境的变化而变化的,比如在极为寒冷或炎热的季节中它们都会发生一定程度的变化(一般是减少)。
目前还没有任何一种电池的能量密度可以达到实用化的驱动电动汽车具有几百公里的续航里程。提高电池的能量密度也是目前电池研发中的重中之重,在安全性得到解决的前提下,如果电池的能量密度可以达到300~400Wh/kg的话,就具备了和传统燃油机车较量续航里程的资本。
但是电池还有一个知名的问题就是寿命,电池的能量密度会随着电池的使用而衰减,并且这种衰减并非是线型的,而可能是突然的降低,所以,在开发车用电池的时候,循环性同样是决定性的因素。
为什么不同电池能量密度不同?
续航能力↑=可用电量↑÷能耗↓
在相同能耗不变,电池包体积和重量不变都受到严格限制的情况下,新能源汽车的单次最大行驶里程主要取决于电池的能量密度。
图1 电池包系统在整车中的布局
什么是能量密度?
能量密度(Energydensity)是指在单位一定的空间或质量物质中储存能量的大小。电池的能量密度也就是电池平均单位体积或质量所释放出的电能。电池的能量密度一般分重量能量密度和体积能量密度两个维度。
电池重量能量密度=电池容量×放电平台/重量,基本单位为Wh/kg(瓦时/千克)
电池体积能量密度=电池容量×放电平台/体积,基本单位为Wh/L(瓦时/升)
电池的能量密度越大,单位体积、或重量内存储的电量越多。
什么是单体能量密度?
电池的能量密度常常指向两个不同的概念,一个是单体电芯的能量密度,一个是电池系统的能量密度。
电芯是一个电池系统的最小单元。M个电芯组成一个模组,N个模组组成一个电池包,这是车用动力电池的基本结构。
图2 动力电池系统构造示意图
单体电芯能量密度,顾名思义是单个电芯级别的能量密度。
根据《中国制造2025》明确了动力电池的发展规划:2020年,电池能量密度达到300Wh/kg;2025年,电池能量密度达到400Wh/kg;2030年,电池能量密度达到500Wh/kg。这里指的就是单个电芯级别的能量密度。
什么是系统能量密度?
系统能量密度是指单体组合完成后的整个电池系统的电量比整个电池系统的重量或体积。因为电池系统内部包含电池管理系统,热管理系统,高低压回路等占据了电池系统的部分重量和内部空间,因此电池系统的能量密度都比单体能量密度低。
系统能量密度=电池系统电量/电池系统重量OR电池系统体积
究竟是什么限制了锂电池的能量密度?
电池背后的化学体系是主要原因难逃其咎。
一般而言,锂电池的四个部分非常关键:正极,负极,电解质,膈膜。正负极是发生化学反应的地方,相当于任督二脉,重要地位可见一斑。
图3 方壳电芯结构图
我们都知道以三元锂为正极的电池包系统能量密度要高于以磷酸铁锂为正极的电池包系统。这是为什么呢?
现有的锂离子电池负极材料多以石墨为主,石墨的理论克容量372mAh/g。正极材料磷酸铁锂理论克容量只有160mAh/g,而三元材料镍钴锰(NCM)约为200mAh/g。
根据木桶理论,水位的高低决定于木桶最短处,锂离子电池的能量密度下限取决于正极材料。
磷酸铁锂的电压平台是3.2V,三元的这一指标则是3.7V,两相比较,能量密度高下立分:16%的差额。
当然,除了化学体系,生产工艺水平如压实密度、箔材厚度等,也会影响能量密度。一般来说,压实密度越大,在有限空间内,电池的容量就越高,所以主材的压实密度也被看做电池能量密度的参考指标之一。
在《大国重器II》第四集中,宁德时代采用了6微米铜箔,利用先进的工艺水平,提升了能量密度。
如果你能坚持每行读下来一直读到这里。恭喜,你对电池的理解已经上了一个层次。
如何提高能量密度呢?
新材料体系的采用、锂电池结构的精调、制造能力的提升是研发工程师“长袖善舞”的三块舞台。下面,我们会从单体和系统两个维度进行讲解。
——单体能量密度,主要依靠化学体系的突破
增大电池尺寸
电池厂家可以通过增大原来电池尺寸来达到电量扩容的效果。我们最熟悉的例子莫过于:率先使用松下18650电池的知名电动车企特斯拉将换装新款21700电池。
图4 不同尺寸的圆柱电池对比
但是电芯“变胖”或者“长个”只是治标,并不治本。釜底抽薪的办法,是从构成电池单元的正负极材料以及电解液成分中,找到提高能量密度的关键技术。
化学体系变革
前面提到,电池的能量密度受制于由电池的正负极。由于目前负极材料的能量密度远大于正极,所以提高能量密度就要不断升级正极材料。
高镍正极
三元材料通指镍钴锰酸锂氧化物大家族,我们可以通过改变镍、钴、锰这三种元素的比例来改变电池的性能。
在图5中几种典型三元材料中可以看出,镍的占比越来越高,钴的占比越来越低。镍的含量越高,意味着电芯的比容量就越高。另外,由于钴资源稀缺,提高镍的比例,将降低的降低钴的使用量。
图5 不同正极材料的克容量对比
硅碳负极
硅基负极材料的比容量可以达到4200mAh/g,远高于石墨负极理论比容量的372mAh/g,因此成为石墨负极的有力替代者。
目前,用硅碳复合材料来提升电池能量密度的方式,已是业界公认的锂离子电池负极材料发展方向之一。特斯拉发布的Model3就采用了硅碳负极。
在未来,如果想要百尺竿头更进一步——突破单体电芯350Wh/kg的关口,业内同行们可能需要着眼于锂金属负极型的电池体系,不过这也意味着整个电池制作工艺的更迭与精进。
图6 锂离子电池电池体系的高能化发展趋势
系统能量密度:提升电池包的成组效率
电池包的成组考验的是电池“攻城狮“们对单体电芯和模组排兵布阵的能力,需要以安全性为前提,最大程度地利用每一寸空间。
电池包的“瘦身”主要有以下几种方式
优化排布结构
从外形尺寸方面,可以优化系统内部的布置,让电池包内部零部件排布更加紧凑高效。
拓扑优化
我们通过仿真计算在确保刚强度及结构可靠性的前提下,实现减重设计。通过该技术,可以实现拓扑优化和形貌优化最终帮助实现电池箱体轻量化。
选材
我们可以选择低密度材料,如电池包上盖已经从传统的钣金上盖逐步转变为复合材料上盖,可以减重约35%。针对电池包下箱体,已经从传统的钣金方案逐步转变为铝型材的方案,减重量约40%,轻量化效果明显。
整车一体化设计
整车一体化设计与整车结构设计通盘考虑,尽可能共享、共用结构件,例如防碰撞设计,实现极致的轻量化
图7 整车集成模态仿真
图8 整车集成模态仿真
电池是一个很全方位的产品,你要提升某一方面的性能,可能会牺牲其他方面的性能,这是电池设计研发的理解基础。动力电池属于车载专用,因而能量密度不是衡量电池品质的唯一尺度。
免责声明:以上内容转载自中国化学与物理电源行业协会,所发内容不代表本平台立场。
全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社
锂电池三元材料的真密度
振实密度 真密度
钴酸锂 1.8(l国标)
锰酸锂 1.8(l国标)
三元
磷酸铁锂
石墨 0.8~1.2(l国标) 2.2(l国标)
以上是国标中查到的,各厂家的有所差异。
坛子上搜了下:
钴酸锂5.1、锰酸锂4.28、磷酸铁锂3.6、三元材料4.8、碳粉2.26我知道的是这些
新能源三元锂电池和磷酸铁锂电池哪个好
磷酸铁锂离子电池的能量密度远不及三元锂离子电池,但其安全性普遍被认为要好于三元锂离子电池。
磷酸铁锂动力锂电池的理论能量密度有限,磷酸铁锂离子电池包单体能量密度为120Wh/kg,成组后能量密度为80Wh/kg,因此,现在公司正在积极研发能量密度更高的磷酸铁锰锂材料新型动力锂离子电池。
相比之下,三元电池能量密度较高,三元锂离子电池单体能量密度为180Wh/kg,成组后110Wh/kg,相应的市场优势明显。因此在能量密度方面,三元锂离子电池优于磷酸铁锂离子电池。
安全性上来讲,磷酸铁锂离子电池包比三元锂离子电池更具有优势。原因在于三元材料中镍钴铝18650电池超过180℃就会自加热,起火后很难控制,而磷酸铁锂材料到250℃才会发生放热现象。总的来说三元锂材料比磷酸铁锂材料更容易着火。
使用电池禁忌
1、常常快速充电。许多新能源车适用快速充电方式,因此 很多司机会挑选快速充电,在短期内给车载充电器进一定用电量,以确保安全一切正常行车。快速充电是个好作用,可是常常应用快速充电会减少电池的复原工作能力,进而降低蓄电池充电的反复频次,对电池导致一定损害。
2、超低温长期放置。现阶段市场再售的新能源车电池关键分成三元锂电池和磷酸铁锂电池二种,尽管他们在应对超低温时主要表现各不相同,可是不管哪一种电池技术性,应对超低温自然环境时都存有电池衰减的状况。
3、常常低电量模式电池充电。因为磷酸铁锂电池是不会有电池记忆性,因此纯电动车就像是大家智能机一样,随时使用随用,尽可能不要再把用电量耗光在电池充电。