本文目录一览:
- 1、冬天电池更需要保暖?来看看会“自热”的电池技术
- 2、解读比亚迪刀片电池:靠什么做到远离自燃?
- 3、三元锂电池可以在三十几度的温度当中充电吗?
- 4、有哪位大佬知道锂电池各种正极材料在低温下的优缺点?能否提供一下
冬天电池更需要保暖?来看看会“自热”的电池技术
人类自从 发现 并开始使用电力之后,对于电力使用的焦虑就一直存在,即便是用于储存电能的电池出现,也只是稍微减缓了这种焦虑。就像现在全球火热的电动车一样,即便是有新鲜的体验,但依旧无法避免电池续航带来的焦虑。
电池对于电动车的直接影响,也使得各大新能源厂商以及电池供应 商 都绞尽脑汁去推进增加续航的方法。不过无论是物理上的堆电池方案,还是改变电池电解质组成 元素 ,甚至改变物质形态的方法,在低温面前,这些电池的续航甚至都不能呈现出一个正常的状态,怎样能够让电池在低温下保温与升温,成为了对抗这个“电池杀手”的关键。
微核高频脉冲加热技术
在研发以及使用电池的过程中,我们已经知道了,电池是有一个正常的工作温度区间,而在低温环境下电池的实际使用效果将会大打折扣,所以在这种环境当中电池就需要一个很好的热管理来为它保温。
在4月21日, 长安汽车 旗下长安深蓝品牌举办了深蓝技术分享会,在会议上长安公布了一项名叫“微核高频脉冲加热技术”。
单听这个名字,就知道这项技术肯定是针对电池热管理系统的,尤其是有脉冲加热这个字眼在。看回长安这次公布的这项技术,实际上它的想法并不复杂,在加热这个大前提条件不变的情况下,让电池包的升温更加迅速且均衡,以便让电池包在低温条件下尽快达到合适的工作环境。
宁德时代专利 CN 108711662 B脉冲加热装置
原理方面其实是基于此前宁德时代公布的一项专利技术拓展开来的,这项专利就是利用了低温导致内阻增大的特性,通过在电池两端加装可以产生振荡电流的装置,使电流经过内阻很大的电芯,从而让电池内部产生大量的热量,最终让电池温度快速升高。
虽然这样的加热方式能够让宁德时代的电池组达到4℃/min的升温效率,但这种频繁让电流从正极向负 极流 经的方式,很容易让锂电池当中的锂离子,在负极上还原过程中形成树枝状金属锂单质,也就是“锂枝晶”。“锂枝晶”生长到一定程度轻则影响电池容量,重则造成锂电池内部短路,严重威胁人身安全。
因此为了避免由于频繁的过电造成电池负极出现锂枝晶的情况,长安在宁德时代这个技术的基础上,对这项技术稍微进行了改进,选择用交流电给电池组产生电流加热。
为什么一定要提及是交流电呢?此前的电池自加热技术,产生的电流都为直流电。按照物理定义,在单位时间内电流的大小和方向不发生变化的称为直流电,再看回“锂枝晶”的的产生条件,在放电过程中负极来不及处理锂离子导致出现金属锂单质。
需要喘息时间的电池负极,面对直流电恒定的输出,很容易到达极限,之后就容易出现“锂枝晶”,所以为了减弱这种“一成不变”,需要给负极一些喘息空间,而在单位时间内电流的大小和方向不断发生周期性变化的交流电就较为合适负责这项工作。
交流电并不像直流电一样一直保持恒定数值,它会一直保持正值-0-负值-0-正值的周期性变化,也正是因为交流电这种非恒定的特性,能够让电池负极减少负担,从而减轻产生锂枝晶的几率。
同时长安在会议上也提到了功率半导体IGBT(绝缘栅双极型晶体管),IGBT是一个非通即断的开关,它没有放大电压的功能,导通时可以看做导线,断开时当做开路。再加上电机以及BMS系统配合工作,就可以实现随机高频率的电流充放切换,进一步的减少锂枝晶这种情况的出现。
长安官方公布的深蓝C385动力电池组,可以在零下30℃的环境温度中保持4℃/ mini 的升温速率,在零下30℃的环境温度中可以提升50%的动力表现以及缩短15%的充电时间。从数据来看,改进后的“电池自加热”技术不仅效率更高,还具备了更持久的电池寿命,这对于在低温地区的用户而言是相当好的消息。
电池:我也需要“暖宝宝”
目前市面上较为主流的电池种类,可以按照元素类型分为两种,即三元锂电池与磷酸铁锂电池,这两者最大的区别就是使用的电池正极材料不同。
磷酸铁锂电池是采用磷酸铁锂( LiFe PO4)作为正极材料。它的优点是在高温条件下或过充时安全性非常高,缺点是在低温条件下(气温低于-10℃以下),磷酸锂电池衰减得非常快,经过不到100次充放电循环,电池容量将下降到初始容量的20%,基本与寒冷地区的使用绝缘了。
三元锂电池是采用镍钴锰酸锂(Li(NiCoMn)O2,NCM)或镍钴铝酸锂(NCA)三元正极材料的锂电池,把镍盐、钴盐、锰盐作为三种不同的成分比例进行不同的调整,所以称之为“三元”,像宁德时代的NCM811就是指镍、钴、锰三者配比为8:1:1的三元锂电池。
三元锂电池的优点是高能量密度,同为宁德时代出品,它旗下的磷酸铁锂电池能量密度为178Wh/kg,而NCM523为200Wh/kg,NCM811更是达到了240Wh/kg。在低温方面-30℃条件下三元锂电池也可保持正常电池容量,更适应北方低温地区的使用条件。缺点是在高温条件下,三元锂电池的三元材料会在200℃时发生分解,在高温作用下极易发生燃烧或爆炸的现象。
上述的两种电池,虽然材料以及优缺点有所不同,但从微观的角度讲,两者的工作原理同样是锂离子在正负极之间来回迁移的过程。
在低温环境下,电池的正负极材料活性降低,同时充当桥梁的电解液导电能力也下降,因此电池在充放电时,内部会产生阻力,它被称为内阻。电池内阻增大,在电池正常使用过程中,就会产生大量焦耳热引起电池温度升高,实验表明环境0℃以下时,温度每下降10℃,内阻约增大15%。
受到了内阻的阻碍,想要发力却只能导致电池过量放电,电能不断的转换为热能,不仅电量下降、没办法正常输出功率,还容易对电池的安全性产生影响,这一切的结果都是因为低温环境造成的。
为了解决这个问题,除了上面我们提到最新的“脉冲自加热”技术外,其实供应商以及厂家都做了很多“保暖”的措施。
PTC元件
加热膜
目前有几种常见的方案,第一种是大多数纯电车型选择的PTC与加热膜,这一种方案的想法是通过外部电热元件发热,提高电池温度。PTC有水暖与风暖两种,水暖通过PTC加热冷却液,再和散热器进行热交换,风暖是开启暖风后,冷空气直接和PTC进行换热,最终吹出暖风。而加热膜则像是给电池盖上一层导电加热的被子,但这两者的缺点都比较明显,PTC容易造成受热不均,并且占电池舱的空间,而加热膜由于安全的关系,整体的造价不低,并且实际的加热效率也不高。
另一种方案是液冷循环系统,它像是给电池包额外加一套暖气上去,通过加热冷却液来获得一个较为长效的热源。还有一种方案是热泵空调,整个原理像是强制抽取大气热量转换进车里的样子,但当环境温度过低的时候热泵容易失效,所以特斯拉也做了一个“魔改”,除了抽取外界空气的热量外,还收集动力电池系统、驱动系统以及PCS功率电子产生的余热,整套系统依靠八通换向阀进行复杂的热量汲取,以此提高热泵空调总体的效率。
展开余下全文(1/2) 2 回顶部
脉冲自加热真的足够稳定?
其实不然,虽然这套“脉冲自加热”技术整个设计都具备了“黑科技”的潜质,但实际上这项技术还需要更多的磨合、调试以及优化。而且,长安这套技术并非是市面上第一个采用脉冲自加热技术作为动力电池热管理的厂家,既为电池供应 商 也为汽车品牌的 比亚迪 实际上已经将这套技术应用到了它们的车型当中。
这项技术主要应用在 比亚迪 旗下的超级混动DM-i车型上, 秦PLUS 的混动专用刀片电池使用的正是脉冲自加热的热管理系统。不过比亚迪这套技术与长安深蓝所使用的方案有些区别,长安深蓝是使用交流电通过三 元 锂电池组进行加热,而比亚迪的方案则是通过两组磷酸铁锂刀片电池组之间互相放电(直流电)进行加热。
从原理上来说,其实长安与比亚迪都是使用温度下降内阻增加后,电流经过大电阻产生热量的方案,只不过长安是在电池组外产生交流电进行过电,而比亚迪是两个电池组互相提供直流电为对方“取暖”,这一点与宁德时代的方案是相似的。
比亚迪目前采用这套技术的车型是 秦 PLUS,现款 秦PLUS DM-i在2021年3月上市,在上市之后网上也出现了DM-i在实际使用当中的一些问题,其中最多车主反应的是 秦 PLUS DM-i在低温环境下会出现发动机抖动、失火等情况。
而出现这个情况,与刀片电池使用到的脉冲自加热技术有关。厂家对自加热功能开启的温度设定过于极限,导致在非极限低温的情况下,脉冲自加热功能不能正常启动,而DM-i的发动机是需要电池带动电机给予发动机初始转速,发动机才能避免启动时的抖动。
因此像上述秦PLUS DM-i车主们遇到的情况,就是脉冲自加热功能在非极限低温下的无法正常工作导致的。同时,由于脉冲自加热功能是两个电池组通过升压程序互相充电加热,因此在使用脉冲自加热功能时,电池无法输出完整、连续的工作电压,也就无法正常的为电驱提供稳定功率,这也表明了DM-i车型只能在脉冲自加热与电驱两种情况之间二选一。
看完比亚迪这套技术产生的问题,对于长安这套技术,我们作为消费者还是需要谨慎对待,长安除了需要解决电驱/自加热只能二选一的情况外,对于环境温度识别以及自加热启动的标定,也需要下更多的功夫,我们也期待长安给出“微核高频脉冲自加热”技术的实测数据。
小结:
在传统、新势力品牌百家争鸣的时代,军备竞赛已经不止在机械调校层面上,高精尖技术也是一项关键的一环,所以也不难理解为什么长安不辞劳苦的再推出一个电动相关的全新平台。单从这次公布的这个脉冲自加热技术来看,技术上的改良是值得我们期待的,但技术最终还是要看体验,加之上一家采用脉冲自加热技术的车企在低温地区已经遭受了重创,这次长安再推带有这款技术的车型,也希望长安能够在调校以及实测体验方面,给到我们消费者一个满意的答卷。(文: 高子健)
@2019
解读比亚迪刀片电池:靠什么做到远离自燃?
现在电动车自燃话题越来越受到人们的关注,毕竟谁也不想自己的车突然就烧了起来,也不希望隔壁车自燃。近日,比亚迪发布了"刀片电池",在发布会上比亚迪董事长王传福发出了豪言壮语:要将"自燃"从电动汽车的字典里抹去。比亚迪的刀片电池究竟强在哪里?可以让王传福发出如此豪言壮语。
动力电池为什么会自燃
在说比亚迪的刀片电池之前,还是先说一下,电动车的动力电池为什么会自燃。比亚迪刀片电池的发布会现场显示了,三元锂电池、传统磷酸铁锂电池和刀片电池的撞针实验视频,可以发现三元锂电池直接发生了爆炸,传统磷酸铁锂电池表面也产生了高温,刀片电池则没有产生高温。
为什么会发生这种情况,还要从三元锂和磷酸铁锂两种电池各自的特点说起,三元锂电池优势在于储能密度和抗低温两个方面,在储能密度上,三元锂电池因为电压高,其能量密度基本能达到240WH/kg,几乎是磷酸铁锂电池140WH/kg的1.7倍。其次则是抗低温上,三元锂电池低温使用下限值为零下30摄氏度,相比磷酸铁锂电池低温下限值零下20摄氏度更有优势。
而磷酸铁锂的优势则在于,安全性会更高,因为磷酸铁锂电池热失控温度普遍在500度以上,三元锂电池则低于300度,一些高镍电池热失控温度甚至低于200度,相比之下磷酸铁锂电池在汽车高速行驶及快速充电过程中自燃风险较低,其次其二是循环寿命更长,因为磷酸铁锂电池充放电循环次数大于3500次后才会开始衰减,也就是说其使用寿命可长达十年左右,但三元锂电池充放电循环次数则仅为2000次,意味着其使用寿命仅为6年,在使用寿命上更加突出,最后就是制造成本更低,因为磷酸铁锂电池没有贵重金属,因而生产成本较低。
刀片电池本质上还是磷酸铁锂电池,只是采用了全新的封装结构,所有磷酸铁锂电池本身安全性的优势还是具备的。而且新的封装结构还可以带来以下几点的好处,单位空间内能量密度大,结构强度大,电池的表面积更大,散热性能更好。其中散热性能好,导致了刀片电池在受到撞击时表面温度更低。
刀片电池的特点
在发布会上,比亚迪宣称刀片电池拥有能量密度高、安全性高的特点。那么比亚迪是如何做到这两点的呢?
在说动力电池为什么会自燃时就有提到,刀片电池本质就是磷酸铁锂电池,那么磷酸铁锂电池的特性在刀片电池上也存在的。不同于传统的磷酸铁锂电池,刀片电池通过结构创新,大幅提高了体积利用率,最终达成在同样的空间内装入更多电芯的设计目标。这样一来刀片电池的能量密度就得到了有效提升,一下解决了磷酸铁锂电池能量密度低的问题。据比亚迪称相较传统的有模电池包,刀片电池的重量比能量密度可达到180Wh/kg。相比此前有模电池组提升大约9%,电池在同等体积下能量密度上比传统铁电池提升了约50%。而采用新结构的刀片电池,表面积更大,散热也会更快,所以在发生过热时也可以快速散热,保证安全性。
刀片电池究竟采用了一种什么结构,从而达到以上的优点呢?现在主流的动力电池都是一个个圆柱电芯,并联在电池包内,再通过电池包的结构件使其固定。刀片电池则是采用一种长方体的结构,每个电芯都是一个长方体,然后并排排列在电池包内,就如同一个个刀片插入电池包,刀片电池的名称也是这么来的。这种长方体的电芯外壳本身就有着非常高的强度,这样一来电池包里就可以不用搭设结构件来维持电池包的强度,而且采用了方形电芯,空间利用率会比圆柱电芯更高,从而提高了整个电池包的能量密度。长方形的结构也增大了其的散热面积,快速散热也保证其安全性。
写在最后
比亚迪新的刀片电池本质还是磷酸铁锂电池,可是通过结构的调整,让其在同样体积下有了媲美三元锂电池的能量密度,而且将磷酸铁锂电池的优势进一步深化,这样未来再采用磷酸铁锂电池的车型就可以和采用三元锂电池的车型拥有同样的续航里程了。新的刀片电池将在比亚迪旗下的弗迪电池投产,并开放出售,这样一来未来将会有非比亚迪品牌的车型采用刀片电池。
这些都是对于电池理论的分析,具体装车的表现,还要看比亚迪首款采用刀片电池的"汉"的上市后具体表现。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
三元锂电池可以在三十几度的温度当中充电吗?
三元聚合物锂电池是指正极材料使用镍钴锰酸锂或者镍钴铝酸锂的三元正极材料的锂电池,三元复合正极材料是以镍盐、钴盐、锰盐为原料,里面镍钴锰的比例可以根据实际需要调整,三元材料做正极的电池相对于钴酸锂电池安全性高,但是电压太低,用在手机上(手机截止电压一般在3.0V左右)会有明显的容量不足的感觉。
三元锂电池适应的工作温度很广,其电热峰值可达到350℃-500℃。相对于普通的铅酸电池,其储能能力更强,而且其材料相对较轻质。作为充电的锂电池,三元锂电池输出电压稳定、输出电压高、性能稳定、容量大、使用寿命长、工作温度范围广、安全性好以及环保无污染,因此在未来锂电池发展道路上具有很大的上升空间,但还需不断研究以求达到改善其自身缺陷的目的。
三元锂电池受温度影响吗?
在锂离子电池实际应用中,材料的高温稳定性也是需要我们考虑的,一般而言,提高温度可以改善三元锂电池内的动力学条件,从而提高电池的性能,这一点从电池在60℃下的容量发挥可以明显的看出来,但是高温会对材料的循环稳定性产生一定的影响。
例如在20℃常温下,三元锂电池的三种材料在前50次循环,具有比较接近的循环性能,但是将温度提高到60℃后,NMC811和NCA材料循环50次后的容量保持率明显低于NMC622材料,这表明NMC622材料具有更高的热稳定性。
影响三元锂电池的三元材料循环性能的因素分析,例如充电截止电压和化成的电压和电流,以及环境温度对NMC和NCA材料循环性能的影响,从本质上来说随着NMC材料脱锂数量的增加,会导致材料的结构稳定性下降,影响循环性能。
此外,高温也会对材料的稳定性产生负面的影响,从而导致材料循环性能下降。根据NMC材料的特性,设计了一种全新的充电制度,既截止容量限制,对充电电压进行调整保证电池每次充电的容量都是相同的,从而克服由于电池过电势导致的充电容量和放电容量的衰降,很好的改善了三元锂电池的循环性能。
有哪位大佬知道锂电池各种正极材料在低温下的优缺点?能否提供一下
三元锂电池的低温性能优异,在-30℃条件下可保持正常电池容量,更适应北方低温地区的使用条件。目前国内外的三元电池厂家基本都能做到-20度的放电温度,且放电容量大于50%,循环寿命在500次左右,完全可以满足太阳能路灯的正常使用。
三元锂电池低温温度使用下限值-30℃,低温放电性能好,和磷酸铁锂电池相同低温条件下,冬季时里程衰减不到15%,明显高于磷酸铁锂电池。
磷酸铁锂可快速充放电、成本低、安全性高、高温性能好、体积小、重量轻,比容量高,循环寿命大,不含有毒有害物质,没有记忆效应,自放电小。低温性能差。低温条件下(气温低于-10℃以下),磷酸锂电池衰减得非常快,经过不到100次充放电循环,电池容量将下降到初始容量的20%,基本与寒冷地区的使用绝缘了。
磷酸铁锂电池温度使用下限值-20℃,且低温环境下放电性能差,在0℃ 时的容量保持率约60~70%,-10℃时为40~55%,-20℃时为20~40%。